Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Environ Res ; 193: 106288, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043169

RESUMEN

At the regional scale, upwelling conditions are known to influence ecosystems and communities and their primary and secondary productivity. However, the influence of upwelling on local herbivore-algae interactions is less well understood. We address this question by cross-examining herbivores and seaweeds from sites associated with upwelling and downwelling conditions along the Humboldt Current System. Specifically, we quantified the feeding and benefits attained by the black sea urchin (Tetrapygus niger) and the black sea snail (Tegula atra) while consuming a widespread kelp species (Lessonia spicata). We hypothesized that food quality drives herbivores' preference, consumption, and growth rates, regardless of the origin or "prior" conditions of the consumers. Laboratory trials measured algal consumption rates with (preference) and without a choice, and consumer's growth rates, to assess the influence of food quality (algae from upwelling vs downwelling sites) and the site of origin of the consumers. Our results showed that algal quality was a prevailing factor for both herbivores: they chose, consumed more, and grew faster on high quality (upwelling) algae. By comparison, the origin of the consumer was only significant for sea snails: those coming from an upwelling site, consumed significantly more and grew faster than those from downwelling. The bulk of our results provided strong support to our hypothesis and suggest that the high nutritional quality of algae associated with upwelling centers has a strong influence on consumers' preferences, consumption, and performance (growth). The fact that origin was found to be relevant for one of the herbivores suggests that the conditions in which species grow may dictate some of their efficiency as consumers.


Asunto(s)
Herbivoria , Algas Marinas , Ecosistema , Conducta Alimentaria
2.
Mar Environ Res ; 189: 106031, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37271060

RESUMEN

Eastern Boundary Upwelling Systems (EBUS) deliver cold, nutrient-rich waters, influencing coastal biota from the molecular to the ecosystem level. Although local upwelling (U) and downwelling (DU) conditions are often known, their influence on body attributes of relevant species has not been systematically compared within and between EBUS (i.e., below and above regional scales). Hence, we compared the physical-chemical characteristics of U and DU sites in the Humboldt Current system (Chile) and the Iberian Current system (Portugal). We then assessed the influence of U and DU upon eight body attributes in purple mussels (Perumytilus purpuratus) and Mediterranean mussels (Mytilus galloprovincialis), from the Humboldt and Iberian systems, respectively. We hypothesized that bivalves from U sites display better fitness, as measured by body attributes, regardless of their origin (EBUS). As expected, waters from U sites in both systems showed lower temperatures and pH, and higher nitrite concentrations. We also found that mussels from U sites showed better fitness than those in DU sites in 12 out of 16 direct U vs DU comparisons. Shell length, shell volume, organic content of soft-tissues, and mechanical properties of the shell averaged consistently higher in mussels from U sites in both Current systems. In addition, total weight, soft-tissue weight, shell weight and shell thickness were all higher in the U site at the Humboldt system but had less consistent differences at the Iberian system. Altogether, most results supported our working hypothesis and indicate that U conditions support better fitted mussels. The few attributes that did not exhibit the expected U vs DU differences in the Iberian system suggest that local and species-specific differences also play a role on the attributes of these species. These results may also serve as a reference point for further studies addressing the influence of upwelling in these productive, critically important systems.


Asunto(s)
Ecosistema , Mytilus , Animales , Chile , Portugal
3.
Mar Pollut Bull ; 193: 115190, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37336043

RESUMEN

Artificial Light at Night (ALAN) alters cycles of day and night, potentially modifying species' behavior. We assessed whether exposure to ALAN influences decision-making (directional swimming) in an intertidal rockfish (Girella laevisifrons) from the Southeastern Pacific. Using a Y-maze, we examined if exposure to ALAN or natural day/night conditions for one week affected the number of visits and time spent in three Y-maze compartments: dark and lit arms ("safe" and "risky" conditions, respectively) and a neutral "non-decision" area. The results showed that fish maintained in natural day/night conditions visited and spent more time in the dark arm, regardless of size. Instead, fish exposed to ALAN visited and spent more time in the non-decision area and their response was size-dependent. Hence, prior ALAN exposure seemed to disorient or reduce the ability of rock fish to choose dark conditions, deemed the safest for small fish facing predators or other potential threats.


Asunto(s)
Lubina , Contaminación Lumínica , Animales , Fotoperiodo , Conducta Animal/fisiología , Natación , Luz
4.
Sci Total Environ ; 858(Pt 1): 159810, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36341853

RESUMEN

Upwelling oceanographic phenomenon is associated with increased food availability, low seawater temperature and pH. These conditions could significantly affect food quality and, in consequence, the growth of marine species. One of the most important organismal traits is somatic growth, which is highly related to skeletal muscle. In fish, skeletal muscle growth is highly influenced by environmental factors (i.e. temperature and nutrient availability) that showed differences between upwelling and downwelling zones. Nevertheless, there are no available field studies regarding the impact of those conditions on fish muscle physiology. This work aimed to evaluate the muscle fibers size, protein content, gene expression of growth and atrophy-related genes in fish sampled from upwelling and downwelling zones. Seawater and fish food items (seaweeds) samples were collected from upwelling and downwelling zones to determine the habitat's physical-chemical variations and the abundance of biomolecules in seaweed tissue. In addition, white skeletal muscle samples were collected from an intertidal fish to analyze muscular histology, the growth pathways of protein kinase B and the extracellular signal-regulated kinase; and the gene expression of growth- (insulin-like growth factor 1 and myosin heavy-chain) and atrophy-related genes (F-box only protein 32 and muscle RING-finger protein-1). Upwelling zones revealed higher nutrients in seawater and higher protein content in seaweed than samples from downwelling zones. Moreover, fish from upwelling zones presented a greater size of muscle fibers and protein content compared to downwelling fish, associated with lower protein ubiquitination and gene expression of F-box only protein 32. Our data indicate an attenuated use of proteins as energy source in upwelling conditions favoring protein synthesis and muscle growth. This report shed lights of how oceanographic conditions may modulate food quality and fish muscle physiology in an integrated way, with high implications for marine conservation and sustainable fisheries management.


Asunto(s)
Ecosistema , Algas Marinas , Animales , Peces , Agua de Mar/química , Músculo Esquelético , Atrofia/metabolismo
5.
Sci Total Environ ; 851(Pt 2): 158307, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36055497

RESUMEN

Upwelling systems deliver nutrient-rich water into coastal ecosystems, influencing primary productivity and potentially altering seaweed-herbivore interactions. Upwelling bottom-up effects on distinct trophic levels are well-known. However, their influence on seaweed biomolecules and on algae-herbivore interactions and growth are less known. The aim of this study was threefold: i) to compare physical-chemical characteristics and nutrient levels in the water of upwelling (U) and downwelling (DU) zones, ii) to quantify their influence on the content of protein and carbohydrates in seaweed tissues of representative U and DU locations, and iii) to experimentally assess their effect on the feeding behavior and growth of a prominent intertidal herbivore, the sea urchin Loxechinus albus. Waters from U zones showed lower temperatures and pH, and higher phosphate concentrations than those from downwelling zones. Similarly, the tissue of seaweeds from a U location had significantly more proteins and carbohydrates than those from a DU location. The origin location of the sea urchins had a significant influence on consumption and growth rates: in general, those coming from a site with U conditions consumed and grew more than those coming from DU conditions. The quality of the algae was a significant factor on consumption rates, although in the case of preference trials, this factor interacted with sea urchin origin location. Our results show that the availability and quality of the food in upwelling zones has an influence on herbivore-seaweed direct interactions. However, these interactions and the growth of the sea urchins were also related to the coastal site and conditions from which the sea urchins came from. These results are relevant considering the expected impact of climate change on the world's oceans, and the importance of U zones as thermal (cold water) refuges for marine ectotherms.


Asunto(s)
Algas Marinas , Animales , Ecosistema , Erizos de Mar , Conducta Alimentaria , Nutrientes , Plantas , Agua , Carbohidratos , Fosfatos
6.
Sci Total Environ ; 830: 154747, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35337870

RESUMEN

Environmental variation alters biological interactions and their ecological and evolutionary consequences. In coastal systems, trematode parasites affect their hosts by disrupting their life-history traits. However, the effects of parasitism could be variable and dependent on the prevailing environmental conditions where the host-parasite interaction occurs. This study compared the effect of a trematode parasite in the family Renicolidae (metacercariae) on the body size and the shell organic and mechanical characteristics of the intertidal mussels Perumytilus purpuratus, inhabiting two environmentally contrasting localities in northern and central Chile (ca. 1600 km apart). Congruent with the environmental gradient along the Chilean coast, higher levels of temperature, salinity and pCO2, and a lower pH characterise the northern locality compared to that of central Chile. In the north, parasitised individuals showed lower body size and shell resistance than non-parasitised individuals, while in central Chile, the opposite pattern was observed. Protein level in the organic matter of the shell was lower in the parasitised hosts than in the non-parasitised ones regardless of the locality. However, an increase in polysaccharide levels was observed in the parasitised individuals from central Chile. These results evidence that body size and shell properties of P. purpuratus vary between local populations and that they respond differently when confronting the parasitism impacts. Considering that the parasite prevalence reaches around 50% in both populations, if parasitism is not included in the analysis, the true response of the host species would be masked by the effects of the parasite, skewing our understanding of how environmental variables will affect marine species. Considering parasitism and identifying its effects on host species faced with environmental drivers is essential to understand and accurately predict the ecological consequences of climate change.


Asunto(s)
Mytilidae , Trematodos , Animales , Cambio Climático , Humanos , Metacercarias , Simbiosis , Trematodos/fisiología
7.
Mar Environ Res ; 161: 105060, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33070932

RESUMEN

Environmental variation may alter biological interactions and their ecological consequences. For instance, in marine ecosystems hosts and parasites are subject to environmental variability across latitudinal gradients, and their co-evolutionary dynamics may be the result of the interplay with local physical-chemical variables in seawater. Thus, assessing the environmental conditions required for a host in order to improve their survival is essential to understand the host-parasite interaction and dynamics. In this study, we evaluated the impact of parasitism by Proctoeces humboldti on the body size and reproduction of the intertidal keyhole limpet Fissurella crassa collected from three populations spanning ca. 1500 km along the latitudinal gradient of the Chilean coast. In addition, for the first time, we explore whether the effect of parasitism can be extended to changes in the organic composition and mechanical properties of the host shell. Our results show that parasitism prevalence and intensity, and body size of F. crassa increased in central Chile (ca. 33°S). Unlike body size, which was greater in parasitized limpets than in non-parasitized limpets at the three study sites, reproductive performance followed this trend only in central Chile populations, with no differences between parasitized and non-parasitized limpets collected in the northern Chilean (ca. 23°S), and lower in parasitized than non-parasitized individuals from the south-central Chile (ca. 37°S). The organic composition of F. crassa shells showed significant differences between parasite conditions (e.g. polysaccharides and water decreased in parasitized limpets) and across sites (e.g. proteins levels increase in shell of parasitized limpets from central Chile, but decreased at south-central Chile). However, variability in shell mechanical properties (e.g. toughness and elastic module) do not showed significant differences across sites and parasitism condition. These results suggest the interplay of both parasitism and environmental fluctuations upon the reproductive performance and morphology of the host. In addition, our result highlight that the host may also trade-offs reproduction, growth and shell organic composition to maintain the shell functionality (e.g. protection for mechanical forces and durophagous predators).


Asunto(s)
Ecosistema , Trematodos , Animales , Tamaño Corporal , Chile/epidemiología , Humanos , Moluscos
8.
Environ Pollut ; 244: 361-366, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30352350

RESUMEN

The increase of global light emissions in recent years has highlighted the need for urgent evaluation of their impacts on the behaviour, ecology and physiology of organisms. Numerous species exhibit daily cycles or strong scototaxic behaviours that could potentially be influenced if natural lighting conditions or cycles are disrupted. Artificial Light Pollution at Night (ALAN) stands for situations where artificial light alters natural light-dark cycles, as well as light intensities and wavelengths. ALAN is increasingly recognized as a potential threat to biodiversity, mainly because a growing number of studies are demonstrating its influence on animal behaviour, migration, reproduction and biological interactions. Most of these studies have focused on terrestrial organisms and ecosystems with studies on the effects of ALAN on marine ecosystems being more occasional. However, with the increasing human use and development of the coastal zone, organisms that inhabit shallow coastal or intertidal systems could be at increasing risk from ALAN. In this study we measured the levels of artificial light intensity in the field and used these levels to conduct experimental trials to determine the impact of ALAN on an intertidal fish. Specifically, we measured ALAN effects on physiological performance (oxygen consumption) and behaviour (activity patterns) of "Baunco" the rockfish Girella laevifrons, one of the most abundant and ecologically important intertidal fish in the Southeastern Pacific littoral. Our results indicated that individuals exposed to ALAN exhibited increased oxygen consumption and activity when compared with control animals. Moreover, those fish exposed to ALAN stopped displaying the natural (circatidal and circadian) activity cycles that were observed in control fish throughout the experiment. These changes in physiological function and behaviour could have serious implications for the long-term sustainability of fish populations and indirect impacts on intertidal communities in areas affected by ALAN.


Asunto(s)
Ciclos de Actividad/fisiología , Conducta Animal/fisiología , Metabolismo Energético/fisiología , Peces/fisiología , Iluminación/efectos adversos , Consumo de Oxígeno/fisiología , Animales , Ecosistema , Contaminación Ambiental , Humanos , Fotoperiodo , Reproducción/fisiología , Alimentos Marinos
9.
Mar Pollut Bull ; 130: 268-270, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29866556

RESUMEN

Ultraviolet (UV) radiation is a primary environmental stressor for marine species inhabiting intertidal pools. Thus, the use of microhabitats as refuges is key to protect organisms against this stressor. In this study, we compared the quality of rocky and algae as refuges for the intertidal fish Girella laevifrons exposed to UV radiation. Refuge quality was studied by evaluating oxygen consumption and weight gain in control and UV-exposed fish. Rocky-refuge fish consumed less oxygen and gained significantly more weight than algal-refuge fish. The obtained results support the importance of refuge quality on energetic balance of intertidal organisms, where energy can be differentially allocated towards key life processes such as protection/repair or growth. Energy trade-offs need to be considered in research concerning animals inhabiting stressful habitats.


Asunto(s)
Ecosistema , Peces/metabolismo , Rayos Ultravioleta , Animales , Peso Corporal , Ambiente , Consumo de Oxígeno
10.
Mar Environ Res ; 129: 408-412, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28705413

RESUMEN

UV-radiation (UVR) and temperatures have increased substantially over recent decades in many regions of the world. Both stressors independently have shown to affect the metabolism and growth in fish. However, because increase of both stressors are occurring concomitantly, to better understand their influences on marine species, their combined effects were evaluated. We test the hypothesis that UVR and temperature act synergistically affecting the metabolism, digestive process and growth of an intertidal fish. Two UVR conditions (with and without UVR) and two temperature levels (20° C and 25° C) were used. UVR increase the oxygen consumption and this was associated to opaque feces production. The absorption efficiency was higher without UVR at high temperatures (25 °C) and with UVR at low temperatures (20 °C). Finally, independent of UVR treatment, fish subjected to low temperature have higher biomass than those of high temperature. The interaction between UVR and temperature may influence on the physiology and growth of animals that inhabit in extreme habitats as upper intertidal, it could pose significant functional for aquatic animal survivorship.


Asunto(s)
Digestión/efectos de la radiación , Peces/fisiología , Consumo de Oxígeno/efectos de la radiación , Rayos Ultravioleta , Animales , Monitoreo del Ambiente , Agua de Mar/química , Temperatura
11.
Mar Pollut Bull ; 116(1-2): 498-500, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28063703

RESUMEN

Microplastics pollution is a growing global concern that affects all aquatic ecosystems. Microplastics in the environment can be in the form of fibers and/or particles, being the former the most abundant in the marine environment, representing up to 95% of total plastics. The aim of this work was to compare the content of microplastics among intertidal fish with different feeding type. Our results show that omnivorous fish presented a higher amount of microplastic fibers than registered in herbivores and carnivores. Moreover, lower condition factors (K) were found in omnivorous specimens with higher microplastic content. We hypothesized that the type of feeding resulted in different microplastic ingestion, with species with wider range of food sources as omnivores with higher rates. Futures studies carried out to evaluate the biological impacts of microplastics on marine organisms, and microplastics cycling on the marine environment should consider the type of feeding of the studied species.


Asunto(s)
Carnivoría , Peces , Contenido Digestivo , Herbivoria , Plásticos , Animales , Organismos Acuáticos , Monitoreo del Ambiente , Contaminantes Químicos del Agua
12.
Sci Total Environ ; 578: 317-322, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27836350

RESUMEN

The amount of ultraviolet (UV) radiation reaching the earth's surface has increased due to ozone layer depletion, and this fact represents an opportunity to evaluate the physiological and behavioral responses of animals to this global-scale stressor. The transitory fish Girella laevifrons inhabits pools in the upper intertidal zone, which is characterized by exposure to a wide range of stressors, including UV radiation. We documented the field magnitude and the impact of UV radiation on oxygen consumption, body mass variations, and shelter (rocky and algae) selection by G. laevifrons. UV-exposed animals showed increased oxygen consumption, slower body weight increase, and active rocky shelter selection. Control fish showed increased body weight and no evident shelter selection. The results indicated that UV exposure affects fish energetic balance and habitat selection to favor greater protection against radiation. Increased UV exposure in transitory intertidal animals at levels observed in upper intertidal pools may alter the residency time of fish before leaving for the subtidal zone. Therefore, UV-induced energetic changes may determine animal performance and ontogenetic physiological itineraries, whereas shelter quality might determine habitat use.


Asunto(s)
Conducta Animal/efectos de la radiación , Consumo de Oxígeno/efectos de la radiación , Perciformes/fisiología , Rayos Ultravioleta , Animales , Peso Corporal/efectos de la radiación , Pérdida de Ozono
13.
Ecohealth ; 11(2): 215-26, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24142461

RESUMEN

The rapid increase in body size and abundance of most species inside Management and Exploitations Areas for Benthic Resources (MEABRs) has led to the proposal of these areas as a good complement for achieving the conservation objectives of Marine Protected Areas (MPAs). However, when evaluating MEABRs and MPAs as conservation and/or management tools, their impact upon parasite populations has rarely been considered, despite the fact that epidemiological theory suggests an increased susceptibility to parasitism under high population abundance. We evaluated the effects of MEABRs on the parasite abundance of Proctoeces lintoni and its impact on the growth of the host limpet Fissurella crassa in central Chile. Parasitic magnitude was higher inside MEABRs than in Open-Access Areas, and parasitized limpets showed a greater shell length, muscular foot biomass, and gonadosomatic index compared to non-parasitized limpets of the same age. Our results suggest that the life cycle of P. lintoni and, consequently, its trophic links have been strengthened inside MEABRs. The increased growth rate could reduce the time required to reach the minimum catch size and increase the reproductive and muscular output of the host population. Thus, parasitism should be considered in the conservation and management of economically important mollusk hosts.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Explotaciones Pesqueras/métodos , Peces/parasitología , Gastrópodos/parasitología , Trematodos/parasitología , Análisis de Varianza , Animales , Chile , Ecosistema , Explotaciones Pesqueras/normas , Interacciones Huésped-Parásitos , Trematodos/patogenicidad , Infecciones por Trematodos/parasitología , Infecciones por Trematodos/veterinaria
14.
J Parasitol ; 95(6): 1408-14, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19545188

RESUMEN

The digenetic trematode, Proctoeces lintoni, is a parasite of the rocky intertidal ecosystems of the Chilean Pacific coastline. Although this species is relatively well known, the first intermediate host has not yet been described. In the present study, we used experimental protocols and field studies to identify the host that harbors the sporocysts and cercariae stages of the parasite. The first intermediate host was shown to be the dominant mussel of the mid-littoral zone, Perumytilus purpuratus.


Asunto(s)
Mytilidae/parasitología , Trematodos/fisiología , Análisis de Varianza , Animales , Chile , Femenino , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/transmisión , Interacciones Huésped-Parásitos , Masculino , Perciformes/parasitología , Análisis de Componente Principal , Estaciones del Año , Agua de Mar , Trematodos/aislamiento & purificación , Infecciones por Trematodos/parasitología , Infecciones por Trematodos/transmisión , Infecciones por Trematodos/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...